新万博体育下载_万博体育app【投注官网】

图片
奥数网
全国站

奥数 > 小学资源库 > 奥数知识点 > 数论问题 > 整数拆分 > 正文

数论之整数拆分练习9

2009-12-24 13:47:13      下载试卷

  一、只有1

  一道简单的问题是:用1、+、×、()的运算来分别表示23和27,哪个数用的1较少?要表达2008,最少要用多少个1?

  我们先给出从1到15的表达式。

  1=1,

  2=1+1,

  3=1+1+1,

  4=(1+1)×(1+1),

  5=(1+1)×(1+1)+1,

  6=(1+1)×(1+1+1),

  7=(1+1)×(1+1+1)+1,

  8=(1+1)×(1+1)×(1+1),

  9=(1+1+1)×(1+1+1),

  10=(1+1)×((1+1)×(1+1)+1),

  11=(1+1)×((1+1)×(1+1)+1)+1,

  12=(1+1+1)×(1+1)×(1+1),

  13=(1+1+1)×(1+1)×(1+1)+1,

  14=  (1+1)×((1+1)×(1+1+1)+1),

  15= (1+1+1)×((1+1)×(1+1)+1)。

  把用1的个数写成数列,就是{1, 2, 3, 4, 5, 5, 6, 6, 6, 7, 8, 7, 8, 8, 8, ...}。

  对于23,

  23 = (1+1)×((1+1)×((1+1)×(1+1)+1)+1)+1,

  1的个数为11。

  对于27,

  27 = (1+1+1) × (1+1+1) × (1+1+1)

  1的个数为9。

  对于2008这样的大数,要寻找表达式很困难。

  我找到的表达式是

  (((1+1)×(1+1)×(1+1+1)×(1+1+1)+1)×(1+1)×(1+1+1)+1)×(1+1+1)×(1+1+1)+1=2008

  一共用了24个1,但是不是用了最少的1,证明起来有一定难度。

 

来源:奥数网 作者:奥数网整理

      欢迎访问奥数网,您还可以在这里获取百万真题,2023小升初我们一路相伴。>>[点击查看]

分类

专题

类型

搜索

  • 欢迎扫描二维码
    关注奥数网微信
    ID:aoshu_2003

  • 欢迎扫描二维码
    关注中考网微信
    ID:zhongkao_com

本周新闻动态

重点中学快讯

奥数关键词

广告合作请加微信:17310823356

广告服务 - 营销合作 - 友情链接 - 网站地图 - 服务条款 - 诚聘英才 - 问题反馈 - 手机版

京ICP备09042963号-15 京公网安备 11010802027854号

违法和不良信息举报电话: 010-56762110 举报邮箱:wzjubao@tal.com

奥数版权所有Copyright@2005-2021 新万博体育下载_万博体育app【投注官网】.